How to prove #(sintheta-costheta+1)/(sintheta+costheta-1)=sectheta+Tantheta# ?

2 Answers
Jun 3, 2018

We use #sin^2(x)+cos^2(x)=1# for the proof

Explanation:

Writing the Right-Hand side as
#1/cos(x)+sin(x)/cos(x)=(1+sin(x))/cos(x)#
and now by cross multiplication we get
#(sin(x)-cos(x)+1)cos(x)=sin(x)cos(x)-cos^2(x)+cos(x)#
and
#(sin(x)+cos(x)-1)(1+sin(x))=#
#sin(x)+cos(x)-1+sin^2(x)+sin(x)cos(x)-sin(x)#
Both sides are equal if
#sin^2(x)+cos^2(x)=1#

Jun 3, 2018

Please see below.

Explanation:

We take Left Hand Side :

#LHS=(sintheta-costheta+1)/(sintheta+costheta-1)#

Dividing (numerator and denominator) by #costheta#,

#LHS=((sintheta-costheta+1)/costheta)/((sintheta+costheta- 1)/costheta)#

#=(tantheta-1+sectheta)/(tantheta+1-sectheta#

#=(sectheta+tantheta-color(red)(1))/(1- sectheta+tantheta)...to[Put,color(red)(1=sec^2theta-tan^2theta)]#

#=(sectheta+tantheta-(color(red)(sec^2theta-tan^2theta)))/(1- sectheta+tantheta)#

#=((sectheta+tantheta)-(sectheta-tantheta) (sectheta+tantheta))/(1-sectheta+tantheta)#

#=((sectheta+tantheta)[1-(sectheta-tantheta)])/(1- sectheta+tantheta)#

#=((sectheta+tantheta)[1-sectheta+tantheta])/([1- sectheta+tantheta])#

#=sectheta+tantheta#

#=RHS#