How to prove that ACD is an equilateral triangle?

DB is the diameter in a circle with the center S, . The line AC goes 90 degrees from the center point M of the line SB. "enter image source here

3 Answers
Jan 7, 2018

Hence #Delta ADC# is an equilateral triangle with sides #sqrt3 r#

Explanation:

Let r be the radius of the circle.

#SM = MB = SB / 2 = r / 2#

#SD = SA = SB / 2 = r#

Triangles SAM & BAM are congruent as

SM = BM = r / 2, AM common & /(SMA) = /(BMA) = 90^0#

#:. SA = BA = r#

#:. Delta SAB is equilateral.

#AM = r sin 60 = (sqrt3/2)r#

#AC = 2 * AM = sqrt3 r#

#AD = sqrt((BD^2 - AB^2) = sqrt ((2r)^2 - r^2) = sqrt (3r^2) = sqrt3 r#

In triangle ADC, DM bisects AC at right angle.

#:. Delta ADC # is isosceles and #AD = AC = sqrt3 r#

Since sides AD, DC & AC are equal and #=sqrt3 r, Delta ADC # is an equilateral triangle.

Jan 7, 2018

see explanation

Explanation:

enter image source here
The given conditions are shown in the figure.
Let #r# be the radius of the circle.
#SA=SB=SC=SD=r#,
#SM=1/2*SB=r/2#
#sinx=(SM)/(SA)=(r/2)/r=1/2, => x=sin^-1(1/2)=30^@#
#=> angleASM=angleCSM=90-x=90-30=60^@#
#=> CSA=2*60=120^@#
#=> angleCSD=180-angleCSM=180-60=120^@#,
similarly, #angleASD=180-angleASM=180-60=120^@#
As #SA=SC=SD=r, and angleCSA=angleCSD=angleASD=120^@#,
#DeltaSAC, DeltaSCD, and DeltaSDA# are all congruent,
#=> AC=CD=DA#,
Hence, #DeltaACD# is an equilateral triangle.

Jan 7, 2018

DB is the diameter in a circle with the center S, . The line AC goes 90 degrees from the center point M of the line SB. "enter image source here

Given that the line AC goes 90 degrees from the center point M of the line SB.

So in #DeltaASB,SM=MB andAM_|_SB#,

Hence #DeltaASM~=DeltaABM#

So #AS=ABand/_ASB=/_ABS#

Again #SD=SA# (radius of same circle)
So #/_SDA=/_SAD#

Now being diameter the semicircular #/_BAD=90^@#

So in #DeltaBAD,#

#/_ABD+/_ADB=90^@#

#=>/_ASB+/_ADS=90^@#

#=>/_ADS+/_SAD+/_ADS=90^@#

#=>/_ADS+/_ADS+/_ADS=90^@#

#=>3/_ADS=90^@#

#=>/_ADSor/_ADM=90^@/3=30^@#

Now diameter #DB# intersects chord #AC# at M perpendicularly.
So DB bisects AC at M.
This means #DeltaADM~=DeltaCDM#

Hence #/_CDM=/_ADM=30^@=>/_ADC=60^@#

So #/_DAC=/_DCA=60^@#

So #DeltaACD " is equiangular or equilateral"#