How to prove that #sin(A+B)sin(A-B)=sin^2A-sin^2B#?
2 Answers
Below
Explanation:
LHS
=
Recall:
And
=
=
Recall:
From above, we can then assume correctly that :
=
=
=
= RHS
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)sin(x+y)=sinxcosy+cosxsiny#
#•color(white)(x)sin(x-y)=sinxcosy-cosxsiny#
#"consider the left side"#
#(sinAcosB+cosAsinB)(sinAcosB-cosAsinB)#
#=sin^2Acos^2B-cos^2Asin^2B#
#=sin^2A(1-sin^2B)-sin^2B(1-sin^2A)#
#=sin^2Acancel(-sin^2Asin^2B)-sin^2Bcancel(+sin^2Asin^2B)#
#=sin^2A-sin^2B#
#="right side "rArr"verified"#