How to prove that #tan112 1/2=-sqrt2-1#?
2 Answers
Please see the proof below
Explanation:
We need
Therefore,
And finally,
Here,
Explanation:
#"using the "color(blue)"half angle identity"#
#•color(white)(x)tan(x/2)=+-sqrt((1-cosx)/(1+cosx))#
# 112 1/2" is in the second quadrant where"#
#tan(112 1/2)<0#
#tan(112 1/2)=-sqrt((1-cos225)/(1+cos225))#
#color(white)(xxxxxxxx)=-sqrt((1-(-cos45))/(1+(-cos45))#
#color(white)(xxxxxxxx)=-sqrt((1+1/sqrt2)/(1-1/sqrt2))#
#color(white)(xxxxxxxx)=-sqrt((sqrt2+1)/(sqrt2-1))#
#color(white)(xxxxxxxx)=-sqrt((sqrt2+1)^2/((sqrt2-1)(sqrt2+1))#
#color(white)(xxxxxxxx)=-sqrt((sqrt2+1)^2)#
#color(white)(xxxxxxxx)=-(sqrt2+1)=-sqrt2-1#