How to rewrite cot(squared)-tan(squared) in terms of sin?

2 Answers
Jun 17, 2018

First things first, we know that

#cotx=1/tanx#

Hence,

#cot^2x-tan^2x=1/tan^2x-tan^2x#

#=(1-tan^4x)/tan^2#

Since we have a difference of two squares, we can apply the formula:

#color(red)(1-tan^4x=(1-tan^2x)(1+tan^2x)#

#:.cot^2x-tan^2x=((1-tan^2x)(1+tan^2x))/tan^2x#

#diamond 1-tan^2x=1-sin^2x/cos^2x=(cos^2x-sin^2x)/cos^2x#

#diamond 1+tan^2x=1+sin^2x/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x#

#:.cot^2x-tan^2x=(cos^2x-sin^2x)/(sin^2x/cos^2xcos^4x)=(cos^2x-sin^2x)/(sin^2xcos^2x)#

Since #cos^2x=1-sin^2x#:

#:. cot^2x-tan^2x=(1-2sin^2x)/(sin^2x(1-sin^2x))#

#=1/sin^2x-1/(1-sin^2x)#

Jun 17, 2018

Answer for the question :
Rewrite : #cot^2x-tan^2x# in terms of #sinx#

#(i)cot^2x-tan^2x=1/sin^2x-1/(1-sin^2x) or#

#(ii)cot^2x-tan^2x=(1-2sin^2x)/(sin^2x(1-sin^2x))#

Explanation:

We know that,

#color(red)((1)csc^2theta-cot^2theta=1) and color(blue)((2)sec^2theta-tan^2theta=1)#

Using #(1) and (2)#

#cot^2x-tan^2x=color(red)((csc^2x-1))-color(blue)((sec^2x-1))#

#color(white)(cot^2x-tan^2x)=csc^2x-sec^2x#

#color(white)(cot^2x-tan^2x)=1/sin^2x-1/cos^2x#

#color(white)(cot^2x-tan^2x)=1/sin^2x-1/(1-sin^2x)#

#color(white)(cot^2x-tan^2x)=((1-sin^2x)-sin^2x)/(sin^2x(1- sin^2x))#

#color(white)(cot^2x-tan^2x)=(1-2sin^2x)/(sin^2x(1-sin^2x))#