How to show that #y>(9/10)# from equation #y=(9+x^2)/(x^2+2x+1)#?
1 Answer
Actually:
#y >= 9/10#
as follows...
Explanation:
Given:
#y = (9+x^2)/(x^2+2x+1)#
Multiply both sides by
#yx^2+2yx+y = x^2+9#
Subtract
#(y-1)x^2+2yx+(y-9) = 0#
This is a quadratic equation in
#ax^2+bx+c = 0#
with
The discriminant
#Delta = b^2-4ac#
#color(white)(Delta) = (2y)^2-4(y-1)(y-9)#
#color(white)(Delta) = 4y^2-4(y^2-10y+9)#
#color(white)(Delta) = 4y^2-4y^2+40y-36#
#color(white)(Delta) = 40(y-9/10)#
In order that the quadratic equation in
So:
#40(y-9/10) >= 0#
Divide both sides by
#y-9/10 >= 0#
Add
#y >= 9/10#
Let's find where
#(9/10 - 1)x^2+2(9/10)x+(9/10-9) = 0#
That is:
#-1/10x^2+18/10x-81/10 = 0#
Multiply through by
#x^2-18x+81 = 0#
That is:
#(x-9)^2 = 0#
So:
#x = 9#
graph{(y-(9+x^2)/(x^2+2x+1))((x-9)^2+(y-9/10)^2-0.03) = 0 [-7.73, 12.27, -3.82, 6.18]}