How to simplify #(16^(-1/4))^3# using the different laws of exponents?

2 Answers
Sep 12, 2017

#1/8#

Explanation:

#"using the "color(blue)"laws of exponents"#

#•color(white)(x)(a^m)^n=a^(mn)#

#•color(white)(x)a^(-m)=1/a^m#

#•color(white)(x)a^(m/n)=(root(n)(a))^m#

#rArr(16^(-1/4))^3=16^(-3/4)#

#color(white)(xxxxxxxx)=1/16^(3/4)#

#color(white)(xxxxxxxx)=1/(root(4)(16))^3=1/2^3=1/8#

Sep 12, 2017

#1/8#

Explanation:

Here we will use the following laws of exponents:

(i) #a^-n = 1/(a^n)#

(ii) #a^(1/n) = rootn(a)#

Expression #= (16^(-1/4))^3#

Apply (i):

#= (1/(16^(1/4)))^3#

Apply (ii):

#= (1/root4(16))^3#

#= (1/2)^3#

#= 1/(2^3) = 1/8#