How to simplify #(16^(-1/4))^3# using the different laws of exponents?
2 Answers
Sep 12, 2017
Explanation:
#"using the "color(blue)"laws of exponents"#
#•color(white)(x)(a^m)^n=a^(mn)#
#•color(white)(x)a^(-m)=1/a^m#
#•color(white)(x)a^(m/n)=(root(n)(a))^m#
#rArr(16^(-1/4))^3=16^(-3/4)#
#color(white)(xxxxxxxx)=1/16^(3/4)#
#color(white)(xxxxxxxx)=1/(root(4)(16))^3=1/2^3=1/8#
Sep 12, 2017
Explanation:
Here we will use the following laws of exponents:
(i)
(ii)
Expression
Apply (i):
Apply (ii):