How to simplify #(-3x^-2y)^-1# in the positive exponential notation?

1 Answer
Sep 18, 2017

See a solution process below:

Explanation:

We can eliminate the outer exponent using these rules of exponents:

#x^color(red)(a) = 1/x^color(red)(-a)# and #a^color(red)(1) = a#

#(-3x^-2y)^color(red)(-1) => 1/(-3x^-2y)^color(red)(- -1) => 1/(-3x^-2y)^color(red)(1) =>#

#1/(-3x^-2y)#

Next, use this rule of exponents on the #x# term to eliminate the final negative exponent:

#1/x^color(red)(a) = x^color(red)(-a)#

#1/(-3x^color(red)(-2)y) => x^color(red)(- -2)/(-3y) => x^2/(-3y) => -x^2/(3y)#