How to solve #lim(root(3)(x^2) -2root(3)(x)+1)/(x-1)^2# ?

1 Answer
Dec 11, 2017

#1/9#

Explanation:

#(root(3)(x^2) -2root(3)(x)+1)/(x-1)^2 = ((root(3)(x)-1)/(x-1))^2# now calling #y = root(3)(x)#

#((root(3)(x)-1)/(x-1))^2 equiv ((y-1)/(y^3-1))^2 = (1/(y^2+y+1))^2#

and finally

#lim_(x->1)(root(3)(x^2) -2root(3)(x)+1)/(x-1)^2 = lim_(y->1) (1/(y^2+y+1))^2 = 1/9#

NOTE

We were using the polynomial identity

#(x^n-1)/(x-1) = 1+x+x^2+ cdots+ x^(n-1)#