How to solve the integral using the residue theorem #int_(-oo)^(+oo)(cos(x)/(x^4+x^2+1))dx#?
1 Answer
# int_(-oo)^(oo) ( cosx ) / ( x^4 + x^2 +1 ) \ dx = e^(-sqrt(3)/2)pi{ sqrt(3)/3cos(1/2) +sin(1/2) } #
# " " = 1.303046536141762 ... #
Explanation:
Sorry that this is such a long solution:
We seek:
# I = int_(-oo)^(oo) \ ( cosx ) / ( x^4 + x^2 +1 ) \ dx #
graph{( cosx ) / ( x^4 + x^2 +1 ) [-5, 5, -2.5, 2.5]}
The function is well defined over the domain
# f(z) = ( e^(iz) ) / ( z^4 + z^2 +1 ) \ \ \ \ \ (= ( cosz+isinz ) / ( z^4 + z^2 +1 ) )#
And its associated contour integral:
# oint_C \ f(z) \ dz #
Where
We will restrict
# z^4+z^2+1 = 0 => =0 #
# z^2-z+1 = 0 => z = \ \ \ \ 1/2+-sqrt(3)/2i #
# z^2+z+1 = 0 => z = -1/2+-sqrt(3)/2i #
We need only be concerned with the two poles in Q1 and Q2, that (providing we make
So then:
# oint_C \ f(z) \ dz = int_(-R)^(R) \ f(x) \ dx + int_(gamma_R) \ f(z) \ dz #
As
# z_1 = -1/2+sqrt(3)/2i \ \ # and# \ \ z_2 = 1/2+sqrt(3)/2i #
Then by the residue theorem:
# oint_C \ f(z) \ dz = 2pii xx ( ("sum of the residues of the"), ("poles of " f(z) " within "C) ) #
# " " = 2pii \ { res_(z=z_1) \ f(z) + res_(z=z_2) \ f(z) }#
And we can calculate the residues as follows:
# res_(z=z_1) = lim_(z rarr z_1) (z-z_1) f(z) #
# " " = lim_(z rarr z_1) (z-z_1) ( e^(iz) ) / ( (z^2-z+1)(z^2+z+1) ) #
# " " = lim_(z rarr z_1) (z-z_1) ( e^(iz) ) / ( (z^2-z+1)(z-z_1)(z-barz_1) ) #
# " " = lim_(z rarr z_1) ( e^(iz) ) / ( (z^2-z+1)(z-barz_1) ) #
# " " = e^(-sqrt(3)/2+1/2i) (-1/4-sqrt(3)/12i) #
# " " = e^(-sqrt(3)/2)e^(1/2i) (-1/4-sqrt(3)/12i) #
Similarly:
# res_(z=z_2) = lim_(z rarr z_2) (z-z_2) f(z) #
# " " = lim_(z rarr z_2) (z-z_2) ( e^(iz) ) / ( (z^2-z+1)(z^2+z+1) ) #
# " " = lim_(z rarr z_2) (z-z_2) ( e^(iz) ) / ( (z-z_2)(z-barz_2)(z^2+z+1) ) #
# " " = lim_(z rarr z_2) ( e^(iz) ) / ( (z-barz_2)(z^2+z+1) ) #
# " " = e^(-sqrt(3)/2-1/2i) (1/4-sqrt(3)/12i) #
# " " = e^(-sqrt(3)/2)e^(-1/2i) (1/4-sqrt(3)/12i) #
So using these results along with the residue theorem we get:
# oint_C \ f(z) \ dz = 2e^(-sqrt(3)/2)pii{ -1/4e^(1/2i)-sqrt(3)/12e^(1/2i)i + 1/4e^(-1/2i)-sqrt(3)/12e^(-1/2i)i } #
# " " = 2e^(-sqrt(3)/2)pi{ -1/4e^(1/2i)i+sqrt(3)/12e^(1/2i) + 1/4e^(-1/2i)i+sqrt(3)/12e^(-1/2i) } #
# " " = 2e^(-sqrt(3)/2)pi{ sqrt(3)/12(e^(1/2i) + e^(-1/2i)) +1/4(e^(-1/2i)-e^(1/2i))i } #
We can simplify the expression as:
# e^(1/2i) + e^(-1/2i) = cos(1/2)+isin(1/2) + cos(-1/2)+isin(-1/2) #
# " " = cos(1/2)+isin(1/2) +cos(1/2)-isin(1/2) #
# " " = 2cos(1/2) #
And:
# e^(-1/2i)-e^(1/2i) = cos(-1/2)+isin(-1/2) -cos(1/2)-isin(1/2) #
# " " = cos(1/2)-isin(1/2) -cos(1/2)-isin(1/2) #
# " " = e^(-1/2i)-e^(1/2i) = -2isin(1/2) #
Hence:
# oint_C \ f(z) \ dz =2e^(-sqrt(3)/2)pi{ sqrt(3)/12(2cos(1/2)) +1/4(2sin(1/2)) } #
# " " = e^(-sqrt(3)/2)pi{ sqrt(3)/3cos(1/2) +sin(1/2) } #
Earlier we established that:
# oint_C \ f(z) \ dz = int_(-R)^(R) \ f(x) \ dx + int_(gamma_R) \ f(z) \ dz #
Now, as we let
# oint_C \ f(z) \ dz = int_(-oo)^(oo) \ f(x) \ dx + int_(gamma_R) \ f(z) \ dz #
As is often the case with contour integrals, we find that:
# lim_(R rarr oo) int_(gamma_R) \ f(z) \ dz = 0 #
I will omit the proof (as it is several pages long) but this can be verified using the Estimation Lemma.
Hence, in summary we have:
# int_(-oo)^(oo) ( e^(iz) ) / ( z^4 + z^2 +1 ) \ dz = int_(-oo)^(oo) ( cosx +isinx) / ( x^4 + x^2 +1 ) \ dx #
# " " = int_(-oo)^(oo) ( cosx) / ( x^4 + x^2 +1 ) \ dx + i \ int_(-oo)^(oo) ( sinx) / ( x^4 + x^2 +1 ) \ dx#
# " " = e^(-sqrt(3)/2)pi{ sqrt(3)/3cos(1/2) +sin(1/2) }#
Equating Real parts we then get the desired result:
# int_(-oo)^(oo) ( cosx ) / ( x^4 + x^2 +1 ) \ dx = e^(-sqrt(3)/2)pi{ sqrt(3)/3cos(1/2) +sin(1/2) } #
# " " = 1.303046536141762 ... #
As a bonus, by equating imaginary parts, we also get
# int_(-oo)^(oo) ( sinx ) / ( x^4 + x^2 +1 ) \ dx = 0 #
But that should come as no surprise as the integrand is an odd function!