How to solve this integral?

#int(1/(2sinx+3cosx))#

1 Answer
Apr 24, 2018

#int 1/(2sinx+3cosx)dx=1/sqrt13ln|tan(x+phi)+sec(x+phi)|+c#

where #phi = arctan(-2/3)#

Explanation:

Instead of usual approach with Weierstrass substitution, we can simplify the denominator as the following;

#2sinx+3cosx=Acos(x+phi)#

But we have to find #A# and #phi#... Well, we can expand the #cos(x+phi)# to get:

#color(red)2sinx+color(red)3cosx=color(red)(-Asinphi)sinx+color(red)(Acosphi)cosx#

In order for our relation to be true, we must have

#Asinphi=-2#
#Acosphi = 3#

To find #A#, square both relations and add them.

#=> A^2 sin^2phi + A^2cos^2phi = 13#

Taking #A^2# as common factor, the #sin^2phi + cos^2phi# simplifies to #1#.

#=> A^2 = 13 => A=sqrt13#, taking only the positive root.

We don't need to find #phi# for now, since it's just a constant.

#:. int 1/(2sinx+3cosx)dx = 1/sqrt(13) int sec(x+phi) dx#

We'll solve this new integral by substitution.

Let #u = x+phi#, with #du=dx#.

#int sec(x+phi)dx = int secu du#

This is a standard integral:

#int secudu = ln|tanu+secu|+C#

By undoing the substitution, we get:

#1/sqrt(13) int sec(x+phi)dx = 1/sqrt13[ln|tan(x+phi)+sec(x+phi)|+C]#

Let #c = C/sqrt13#.

#1/sqrt13 intsec(x+phi)dx = 1/sqrt13ln|tan(x+phi)+sec(x+phi)|+c#

#:.int 1/(2sinx+3cosx)dx =1/sqrt13ln|tan(x+phi)+sec(x+phi)|+c#

Only thing left is to find #phi#. From our previous relations, we have:

#sinphi = -2/sqrt13#
#cosphi=3/sqrt13#

#=> tanphi = -2/3#

#color(red)(phi = arctan (-2/3)#

Thus,

#color(Red)(int 1/(2sinx+3cosx)dx#

#color(red)(=1/sqrt13ln|tan(x+phi)+sec(x+phi)|+c#

where #phi = arctan (-2/3)#.