How to solve this integral #int_(-oo)^(+oo)(x)/((x^2+4x+13)^2)dx#?

1 Answer
Mar 31, 2017

# - 1/27pi #

Explanation:

Let:

# I = int_(-oo)^(oo) \ x/(x^2+4x+13)^2 \ dx #

We attempt to manipulate the numerator so that it contains the derivative of the quadratic in the denominator, ie #2x+4#

# I = int_(-oo)^(oo) \ (1/2(2x+4)-2)/(x^2+4x+13)^2 \ dx #
# \ \ = int_(-oo)^(oo) \ (1/2(2x+4))/(x^2+4x+13)^2 - (2)/(x^2+4x+13)^2\ dx #

Consider the first integral (we will deal with the improper integral)

# I_1 = int \ (2x+4)/(x^2+4x+13)^2 \ dx #

We can perform a simple substitution:
Let #u=x^2+4x+13 => (du)/dx=2x+3 #

# :. I_1 = int \ 1/u^2 \ du #
# " " = -1/u #
# " " = -1/(x^2+4x+13) #

Now, consider the second integral (again we will deal with the improper integral)

# I_2 = int \ 1/(x^2+4x+13)^2\ dx #

We can complete the square on the denominator to get:

# I_2 = int \ 1/((x+2)^2-2^2+13)^2\ dx #
# \ \ \ = int \ 1/((x+2)^2+9)^2\ dx #
# \ \ \ = int \ 1/((x+2)^2+3^2)^2\ dx #

Let #u=x+2 => (du)/dx=1 #

# :. I_2 = int \ 1/(u^2+3^2)^2 \ du #

I'll just quote this result here, as the integration is a bit tedious:

# int 1/(u^2+a^2)^2 \ du = u/(2a^2(u^2+a^2)) + 1/(2a^3)tan^(-1) (u/a) #

# :. I_2 = u/(18(u^2+9)) + 1/54tan^(-1) (u/3) #
# " " = (x+2)/(18((x+2)^2+9)) + 1/54tan^(-1) ((x+2)/3) #

Combining our results we get:

# I = -1/2 * [1/(x^2+4x+13) ]_(-oo)^(oo) #
# " "- 2*[(x+2)/(18((x+2)^2+9)) + 1/54tan^(-1) ((x+2)/3)]_(-oo)^(oo) #

# \ \ = 0 - 2 * [0 + 1/54tan^(-1) ((x+2)/3)]_(-oo)^(oo) #

# \ \ = - 1/27[tan^(-1) ((x+2)/3)]_(-oo)^(oo) #

# \ \ = - 1/27(pi/2-(-pi/2) #
# \ \ = - 1/27pi #