How to solve without the l'Hospital's rule? #lim_(x->0) (xcos^2(x))/(x+tan(3x))#

2 Answers
Feb 14, 2018

#1/4#

Explanation:

#"You could use the Taylor series expansion."#
#cos(x) = 1 - x^2/2! + x^4/4! - ...#
#tan(x) = x + x^3/3 + 2 x^5/15 + ...#
#=> cos^2(x) = 1 - x^2 + x^4 (1/4 + 2/24) ...#
#= 1 - x^2 + x^4/3 ...#
#=> tan(3x) = 3x + 9 x^3 + ...#

#=> (x*cos^2(x))/(x+tan(3x)) =#
#(x - x^3 + x^5/3 ...)/(4x + 9 x^3 + ...)#
#x->0 => " higher powers disappear"#
#= (x - ...)/(4x + ...)#
#= 1/4#

Feb 14, 2018

Please see below.

Explanation:

#(xcos^2x)/(x+tan3x) = 1/(1+(sin3x)/(xcos3x))*cos^2x#

# = 1/(1+3((sin3x)/(3x)) * 1/(cos3x))*cos^2x#

Note that #lim_(xrarr0)(sin3x)/(3x) = 1# and #lim_(xrarr0)cosx = 1#

So in the limit, we have:

#1/(1+3(1) * 1/1) * (1)^2 = 1/(1+3) = 1/4#