How to use de moivre's theorem to express #(sin 6theta)/sin theta# as a polynomial in #cos theta#?
1 Answer
Feb 5, 2018
Explanation:
For brevity write
By Pythagoras' theorem, we have:
#c^2+s^2 = 1#
and hence:
#s^2=1-c^2#
By de Moivre's theorem, we have:
#cos 6 theta + i sin 6 theta#
#=(c+is)^6#
#=c^6+6ic^5s-15c^4s^2-20ic^3s^3+15c^2s^4+6ics^5-s^6#
#=(c^6-15c^4s^2+15c^2s^4-s^6)+is(6c^5-20c^3s^2+6cs^4)#
Equating imaginary parts, we have:
#sin 6 theta = s(6c^5-20c^3s^2+6cs^4)#
#color(white)(sin 6 theta) = s(6c^5-20c^3(1-c^2)+6c(1-c^2)^2)#
#color(white)(sin 6 theta) = s(6c^5-20c^3+20c^5+6c-12c^3+6c^5)#
#color(white)(sin 6 theta) = s(32c^5-32c^3+6c)#
So:
#(sin 6 theta)/sin theta = 32cos^5 theta-32cos^3 theta+6cos theta#