We know that ,
#(1)int_a^b f(x)dx=lim_(nto oo ) hsum_(i=1)^n f(a+ih) ,where, h=(b-a)/n#
We have ,
#I=int_0^2(x^3+x)dx=>f(x)=x^3+x ,and a=0 ,b=2#
#f(a+ih)=f(0+ih)=f(ih)=(ih)^3+(ih)=i^3h^3+ih#
#:.h=(b-a)/n=(2-0)/n=2/n#
#I=lim_(nto oo)hsum_(i=1)^n{i^3h^3+ih}#
#=lim_(nto oo)h{h^3sum_(i=1)^n i^3 +hsum_(i=1)^n i}#
#=lim_(nto oo)2/n{8/n^3sum_(i=1)^n i^3+2/nsum_(i=1)^ni}....to[because h=2/n]#
#=lim_(nto oo)16/n^4sum_(i=1)^n i^3+lim_(nto oo)4/n^2sum_(i=1)^ni#
#=lim_(nto oo)16/n^4*n^2/4(n+1)^2+lim_(nto oo) 4/n^2*n/2(n+1)#
#=lim_(ntooo)4/n^2(n+1)^2+lim_(nto oo)2/n(n+1)#
#=4lim_(nto oo)((n+1)/n)^2+2lim_(nto oo)((n+1)/n)#
#=4lim_(nto oo)(1+1/n)^2+2lim_(nto oo)(1+1/n)#
#=4(1+0)^2+2(1+0)...to[becauselim_(nto oo)1/n=0]#
#=4+2#
#=6#
Note :
#diamondsum_(i=1)^ni=n/2(n+1)#
#diamondsum_(i=1)^ni^3=n^2/4(n+1)^2#