How to verify by differentiation that #int1/(sqrt(x^2-a^2)dx# =#lnabs(x+sqrt(x^2-a^2)# +c, given that x>#absa# ?

1 Answer
Jun 16, 2017

With #x > absa# we know #abs(x+sqrt(x^2-a^2)) = x+sqrt(x^2-a^2)#, so

Explanation:

#lnabs(x+sqrt(x^2-a^2)) = ln(x+sqrt(x^2-a^2))#

We also know that #d/dx(lnu) = 1/u (du)/dx#.

And #d/dx(sqrtu) = 1/(2sqrtu) (du)/dx#

Therefore the derivative of # ln(x+sqrt(x^2-a^2))# is

#1/(x+sqrt(x^2+a^2)) * (1+1/(2sqrt(x^2-a^2)) * (2x))#

#= 1/(x+sqrt(x^2+a^2)) * (1+(2x)/(2sqrt(x^2-a^2)))#

#= 1/(x+sqrt(x^2+a^2)) * (1+x/sqrt(x^2-a^2))#

#= 1/(x+sqrt(x^2+a^2)) * (sqrt(x^2+a^2)/(sqrt(x^2+a^2))+x/sqrt(x^2-a^2))#

# = 1/sqrt(x^2+a^2)#