How to verify the identity: (1-2cos^2(x))/(sin(x)cos(x))?

How does one verify #(1-2cos^2x)/(sinxcosx) = tanx-cotx# using basic trig identities such as the Quotient Identities, the Reciprocal Identites, and the Pythagorean Identities?

3 Answers
Feb 25, 2018

#tanx-cotx#

Explanation:

#(1-2cos^2(x))/(sin(x)cos(x))=#

#((sin^2(x)+cos^2(x))-2cos^2(x))/(sin(x)cos(x))=#

#(sin^2(x)-cos^2(x))/(sin(x)cos(x))=#

#sin^2x/(sinxcosx)-cos^2x/(sinxcosx)=#

#sinx/(cosx)-cosx/(sinx)=#

#tanx-cotx#

Feb 25, 2018

Please look at the Explanation area for this is a "how" question.

Explanation:

The first step to this problem is to use a Pythagorean Identity:

#cos^2x=1-sin^2x#

But we only want to replace one of the #cos^2x# so we can rewrite the identity like this for clarity:

#(1−(cos^2x+cos^2x))/(sinxcosx)=tanx−cotx#

And then complete the substitution:

#(1−(1-sin^2x+cos^2x))/(sinxcosx)=tanx−cotx#

Next, distribute the negative and simplify:

#(sin^2x-cos^2x)/(sinxcosx)=tanx−cotx#

Now we can split this fraction into two:

#(sin^2x)/(sinxcosx)-(cos^2x)/(sinxcosx)=tanx−cotx#

Simplify:

#(sinx)/(cosx)-(cosx)/(sinx)=tanx−cotx#

Apply the quotient identities:

#(sinx)/(cosx) = tanx " and " (cosx)/(sinx) = cotx#

And you reach:

#tanx−cotx=tanx−cotx#

Feb 25, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)tanx=sinx/cosx" and "cotx=cosx/sinx#

.#•color(white)(x)sin^2x+cos^2x=1#

#"consider the right side"#

#tanx-cotx#

#=sinx/cosx-cosx/sinx#

#=(sin^2x-cos^2x)/(sinxcosx)#

#=(1-cos^2x-cos^2x)/(sinxcosx)#

#=(1-2cos^2x)/(sinxcosx)=" left side "rArr" verified"#