How to you find the general solution of #sqrt(x^2-9)y'=5x#?
1 Answer
Jan 18, 2017
Explanation:
Writing
#sqrt(x^2-9)dy/dx=5x#
Then:
#dy/dx=(5x)/sqrt(x^2-9)#
Separating the variables by treating
#intdy=int(5x)/sqrt(x^2-9)dx#
#y=int(5x)/sqrt(x^2-9)dx#
Solve the remaining integral by letting
#y=5/2int(2x)/sqrt(x^2-9)dx#
#y=5/2int1/sqrtudu#
#y=5/2intu^(-1/2)du#
#y=5/2(u^(1/2)/(1/2))+C#
#y=5sqrtu+C#
#y=5sqrt(x^2-9)+C#