How would you make partial fractions of? #(7x-9)/((x+1)(x-3))# And #(x-11)/((x-4)(x+3))#
1 Answer
Feb 20, 2018
Explanation:
#"since the factors on the denominator are linear we can"#
#"express the rational function as"#
#(7x-9)/((x+1)(x-3))=A/(x+1)+B/(x-3)#
#"multiply both sides by "(x+1)(x-3)" to obtain"#
#rArr7x-9=A(x-3)+B(x+1)#
#"using "color(blue)"Heaviside's cover up rule"#
#"that is use the zeros of the factors and substitute"#
#"into both sides to solve for A and B"#
#x=-1to-16=-4A+B(0)rArrA=4#
#x=3to12=A(0)+4BrArrB=3#
#rArr(7x-9)/((x+1)(x-3))=4/(x+1)+3/(x-3)#
#color(blue)"Similarly"#
#(x-11)/((x-4)(x+3))=A/(x-4)+B/(x+3)#
#"multiply both sides by "(x-4)(x+3)#
#rArrx-11=A(x+3)+B(x-4)#
#x=-3to-14=A(0)-7BrArrB=2#
#x=4to-7=7A+B(0)rArrA=-1#
#rArr(x-11)/((x-4)(x+3))=2/(x+3)-1/(x-4)#