Prerequisite :
#(0) : arc tanx-arc tany=arc tan{(x-y)/(1+xy)}, (x>0,y>0)#.
We have, #(n+1)/(n^3+1)=(n+1)/{(n+1)(n^2-n+1)}#
#=1/(n^2-n+1)............[because, n ne -1]#,
#=1/{1+n(n-1)}#
Hence, if #S=sum_(n=1)^oo arc tan{(n+1)/(n^3+1)}#, then,
#S=sum_(n=1)^oo arc tan{1/{1+n(n-1)}}#,
#=sumarc tan[{n-(n-1)}/{1+n(n-1)}]#,
#=lim_(m to oo)sum_(n=1)^m{arc tann-arctan(n-1)}...[because, (0)] #,
#=lim_(m to oo)[{cancel(arc tan1)-arc tan0}+{cancel(arc tan2)-cancel(arc tan1)}+{arc tan3-cancel(arc tan2)}...+{cancel(arc tan(m-1))-cancel(arc tan(m-2))}+{arc tanm-cancel(arc tan(m-1))}]#,
#=lim_(m to oo){arc tanm-0}#.
#rArr S=sum_(n=1)^oo arc tan{(n+1)/(n^3+1)}=pi/2#.
Feel & Spread the Joy of Maths.!