If #(1+x)^n# = #C_0 + C_1x + C_2x^2+cdots+C_nx^n#, then #C_1/C_0 + (2C_2)/C_1 + (3C_3)/C_2 + cdots + (nC_n)/C_(n-1) = #?
If #(1+x)^n# = #C_0 + C_1x + C_2x^2+cdots+C_nx^n# , then #C_1/C_0 + (2C_2)/C_1 + (3C_3)/C_2 + cdots + (nC_n)/C_(n-1) = # ?
If
1 Answer
Feb 23, 2018
Explanation:
Given:
#(1+x)^n = C_0+C_1x+C_2c^2+...+C_nx^n#
By the binomial theorem:
#C_k = ""^nC_k = (n!)/((n-k)!k!)#
So:
#C_(k+1)/C_k = (n!)/((n-k-1)!(k+1)!) -: (n!)/((n-k)!k!)#
#color(white)(C_(k+1)/C_k) = ((n-k)!k!)/((n-k-1)!(k+1)!)#
#color(white)(C_(k+1)/C_k) = ((n-k)color(red)(cancel(color(black)((n-k-1)!)))color(green)(cancel(color(black)(k!))))/(color(red)(cancel(color(black)((n-k-1)!)))(k+1)color(green)(cancel(color(black)(k!))))#
#color(white)(C_(k+1)/C_k) = (n-k)/(k+1)#
So:
#((k+1)C_(k+1))/C_k = n-k#
And:
#sum_(k=0)^(n-1) ((k+1)C_(k+1))/C_k = sum_(k=0)^(n-1) (n-k) = sum_(k=1)^n k = 1/2n(n+1)#