If #2x+6y=2# and #-7+5y=x#, what is #2x#?

3 Answers
Jan 24, 2018

2x=-4

Explanation:

You can solve this by using a system of equations and the substitution method.

#2x+6y=2#
#-7+5y=x#

Since the second equation has an #x=#, substitute it for the #x# in the first equation.

#2(-7+5y)+6y=2#

Solve for #y# like you would any other equation.

#-14+10y+6y=2#
#16y=16#
#y=1#

Finally, plug your new #y# value into either of the original equations and solve. Here, I used the second one.

#-7+5(1)=x#
#x=-2#

Multiply this #x# value by 2 to find 2x.

#2x=2(-2)=-4#

Hope this helps!

Jan 24, 2018

#2x=-4#

Explanation:

#2x+6y=2to(1)#

#-7+5y=xto(2)#

#"substitute "x=-7+5y" into equation "(1)#

#2(-7+5y)+6y=2#

#rArr-14+10y+6y=2#

#rArr-14+16y=2#

#"add 14 to both sides"#

#cancel(-14)cancel(+14)+16y=2+14#

#rArr16y=16#

#"divide both sides by 16"#

#(cancel(16) y)/cancel(16)=16/16#

#rArry=1#

#"substitute "y=1" into equation "(2)#

#-7+5=xrArrx=-2#

#rArr2x=2xx-2=-4#

Jan 24, 2018

#color(blue)(2x = (-4)#

Explanation:

Given:

#color(blue)(2x+6y=2)# #color(red)(Equation.1)#

#color(blue)(-7+5y=x)# #color(red)(Equation.2)#

#color(green)(Step-1)#

We can write #color(red)(Equation.2)# as

#-7+5y=x#

Add #color(green)(+7# on both side of the equation:

#-7+5y color(green)(+7=x color(green)(+7#

#-cancel 7+5y color(green)(+ cancel 7=x color(green)(+7#

#5y =x +7#

Add #color(brown)((-x)# on both side of the equation:

#5y+ color(brown)(-x) =x +7+color(brown)(-x)#

#5y+ color(brown)(-x) =cancel x +7+color(brown)(- cancel x)#

#5y -x =7#

#color(blue)(-x + 5y =7# #color(red)(Equation.3)#

#color(green)(Step-2)#

Consider:

#color(blue)(2x+6y=2)# #color(red)(Equation.1)#

#color(blue)(-x + 5y =7# #color(red)(Equation.3)#

Multiply each term in #color(red)(Equation.3)# by #2# to get

#color(blue)(-2x + 10y =14# #color(red)(Equation.4)#

Add #color(red)(Equation.1)# and #color(red)(Equation.4)#

#color(blue)(2x+6y=2)# #color(red)(Equation.1)#

#color(blue)(-2x + 10y =14# #color(red)(Equation.4)# to get

#16y=16#

Divide each term by #16#

#(16y)/16=16/16#

#(cancel 16*y)/ cancel 16=16/16#

Hence,

#color(blue)(y= 1#

#color(green)(Step-3)#

Substitute #color(blue)(y= 1# in

#color(blue)(2x+6y=2)# #color(red)(Equation.1)#

#2x+6*1 =2#

#2x+6 =2#

Add #(-6)# to both sides

#2x+6 +(-6) =2 + (-6)#

#2x+cancel 6 +(-cancel 6) =2 + (-6)#

#2x=-4#

Divide both sides by #2#

#(2x)/2=(-4)/2#

#(cancel 2x)/cancel 2=(-4)/2#

#color(blue)(x=(-2)#

So, we have

#color(blue)(x=(-2)#

#color(blue)(y= 1#

You want to find the value of #color(brown)(2x#

#color(blue)(2x = 2*(-2) = -4)#

Hence

#color(blue)(2x = (-4)#

Hope this helps.