If #3x^2+2(p+q+r)x+pq+qr+rp# be a perfect squares,prove that #p=q=r#?
#3x^2+2(p+q+r)x+pq+qr+rp#
1 Answer
Jan 18, 2018
See explanation...
Explanation:
#3(3x^2+2(p+q+r)x+pq+qr+rp)#
#=9x^2+6(p+q+r)x+3(pq+qr+rp)#
#=(3x)^2+2(3x)(p+q+r)+(p+q+r)^2+3(pq+qr+rp)-(p+q+r)^2#
#=(3x+(p+q+r))^2+3(pq+qr+rp)-(p+q+r)^2#
If this is a square for all values of
#3(pq+qr+rp)-(p+q+r)^2 = 0#
So:
#0 = -2(3(pq+qr+rp)-(p+q+r)^2)#
#color(white)(0) = 2p^2+2q^2+2r^2-2pq-2qr-2rp#
#color(white)(0) = p^2-2pq+q^2+q^2-2qr+r^2+r^2-2rp+p^2#
#color(white)(0) = (p-q)^2+(q-r)^2+(r-p)^2#
This is only possible for real values of
#p = q = r#