#7\sin ^ { 2} \theta + 3\cos ^ { 2} \theta = 4#
#=>7\sin ^ { 2} \theta + 3\cos ^ { 2} \theta = 4(sin^2theta+cos^2theta)#
#=>7\sin ^ { 2} \theta + 3\cos ^ { 2} \theta = 4sin^2theta+4cos^2theta#
#=>7\sin ^ { 2} \theta-4sin^2theta = 4cos^2theta- 3\cos ^ { 2} \theta#
#=>3sin^2theta = cos^2theta#
#=>tan^2theta=1/3#
#=>tantheta=pm1/sqrt3#
Alternative Way
Dividing both sides by #cos^2theta#
#7sin^2theta/cos^2theta + 3cos ^ 2theta/cos^2theta = 4/cos^2theta#
#=>7tan^2theta + 3 = 4sec^2theta#
#=>7tan^2theta + 3 = 4(1+tan^2theta)#
#=>7tan^2theta -4tan^2theta= 4-3=1#
#=>3tan^2theta=1#
#=>tantheta=pm1/sqrt3#