If #A = <1 ,6 ,9 >#, #B = <-9 ,-6 ,7 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 12, 2017

The angle is #=54.2#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈1,6,9〉-〈-9,-6,7〉=〈10,12,2〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈1,6,9〉.〈10,12,2〉=10+72+18=100#

The modulus of #vecA#= #∥〈1,6,9〉∥=sqrt(1+36+81)=sqrt118#

The modulus of #vecC#= #∥〈10,12,2〉∥=sqrt(100+144+4)=sqrt248#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=100/(sqrt118*sqrt248)=0.58#

#theta=54.2#º