If A = <2 ,1 ,-3 >A=<2,1,3>, B = <3 ,4 ,1 >B=<3,4,1> and C=A-BC=AB, what is the angle between A and C?

1 Answer
May 5, 2018

The angle is =68.48^@=68.48

Explanation:

Start by calculating

vecC=vecA-vecBC=AB

vecC=〈2,1,-3〉-〈3,4,1〉=〈-1,-3,-4〉C=2,1,33,4,1=1,3,4

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈2,1,-3〉.〈-1,-3,-4〉=-2-3+12=7A.C=2,1,3.1,3,4=23+12=7

The modulus of vecAA= ∥〈2,1,-3〉∥=sqrt(4+1+9)=sqrt142,1,3=4+1+9=14

The modulus of vecCC= ∥〈-1,-3,-4〉∥=sqrt(1+9+16)=sqrt261,3,4=1+9+16=26

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=7/(sqrt14*sqrt26)=0.3669cosθ=A.CAC=71426=0.3669

theta=arccos(0.3669)=68.48^@θ=arccos(0.3669)=68.48