If #A = <2 ,1 ,-3 >#, #B = <3 ,4 ,1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
May 5, 2018

The angle is #=68.48^@#

Explanation:

Start by calculating

#vecC=vecA-vecB#

#vecC=〈2,1,-3〉-〈3,4,1〉=〈-1,-3,-4〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,1,-3〉.〈-1,-3,-4〉=-2-3+12=7#

The modulus of #vecA#= #∥〈2,1,-3〉∥=sqrt(4+1+9)=sqrt14#

The modulus of #vecC#= #∥〈-1,-3,-4〉∥=sqrt(1+9+16)=sqrt26#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=7/(sqrt14*sqrt26)=0.3669#

#theta=arccos(0.3669)=68.48^@#