If #A= <2 ,1 ,-4 ># and #B= <3 ,2 ,-5 >#, what is #A*B -||A|| ||B||#?

1 Answer
Dec 10, 2016

The answer is #=-0.25#

Explanation:

Here we need the dot product and the modulus

The dot product is #=〈a,b,c〉.〈d,e,f〉=ad+be+cf#

The modulus of a vector is #=∥〈a,b,c〉∥=sqrt(a^2+b^2+c^2)#

Here we have #vecA=〈2,1,-4〉# and #vecB=〈3,2,-5〉#

#vecA.vecB=〈2,1,-4〉.〈3,2,-5〉=6+2+20=28#

The modulus of #vecA#

#=∥〈2,1,-4〉∥=sqrt(4+1+16)=sqrt21#

The modulus of #vecB#

#=∥〈3,2,-5〉∥=sqrt(9+4+25)=sqrt38#

Therefore,

#vecA.vecB-∥vecA∥∥vecB∥=28-sqrt21sqrt38#

#=28-sqrt798=28-28.25=-0.25#