If #A = <2 ,1 ,6 >#, #B = <5 ,1 ,3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 14, 2016

<# theta = 63.8^@ # ( 1 decimal place )

Explanation:

#vecC = vecA - vecB =( 2 , 1 ,6 ) - (5 , 1 ,3 ) =( - 3 , 0 , 3 ) #

To calculate the angle# (theta) between vecA and vecC #

use the following formula :

#costheta =( vecA . vecC)/ (|vecA| |vecC|)#

The 'dot product' # vecA . vecC =(2 , 1 , 6 ) . ( - 3 , 0 , 3 )#

= -6 + 0 + 18 = 12

and# |vecA| = sqrt(2^2 +1^2 + 6^2) = sqrt(4 + 1 + 36 ) = sqrt41#

#|vecC| = sqrt( (- 3 )^2 +0^2 + 3^2) = sqrt(9 + 0 + 9) = sqrt18 #

substituting these values into the formula :

# costheta = 12/(sqrt41 xx sqrt18) = 0.4417...#

#rArr theta = 63.8^@ #