If #A = <2 ,1 ,6 >#, #B = <5 ,1 ,3 ># and #C=A-B#, what is the angle between A and C?
1 Answer
Jan 14, 2016
<
Explanation:
#vecC = vecA - vecB =( 2 , 1 ,6 ) - (5 , 1 ,3 ) =( - 3 , 0 , 3 ) # To calculate the angle
# (theta) between vecA and vecC # use the following formula :
#costheta =( vecA . vecC)/ (|vecA| |vecC|)# The 'dot product'
# vecA . vecC =(2 , 1 , 6 ) . ( - 3 , 0 , 3 )# = -6 + 0 + 18 = 12
and
# |vecA| = sqrt(2^2 +1^2 + 6^2) = sqrt(4 + 1 + 36 ) = sqrt41#
#|vecC| = sqrt( (- 3 )^2 +0^2 + 3^2) = sqrt(9 + 0 + 9) = sqrt18 # substituting these values into the formula :
# costheta = 12/(sqrt41 xx sqrt18) = 0.4417...#
#rArr theta = 63.8^@ #