If #A = <2 ,1 ,8 >#, #B = <5 ,7 ,3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Oct 24, 2016

THe angle is 66.2º

Explanation:

The dot product betwwen 2 vectors is
#〈veca〉.〈vecc〉=∥〈veca〉∥∥〈vecc〉∥cos(veca,vecc)#

#cos(veca,vecc)=(〈veca〉 .〈 vecc 〉 ) /(∥〈veca〉∥∥〈vecc〉∥)#

If #〈veca〉=〈a_1,a_2,a_3〉#
and #〈vecc〉=〈c_1,c_2,c_3〉#

The dot product is #〈veca〉.〈vecc〉=a_1c_1+a_2c_2+a_3c_3#

#〈vecc〉=〈veca〉-〈vecb〉 =〈2,1,8〉-〈5,7,3〉 =〈-3,-6,5〉#

#〈veca〉.〈vecc〉=-6+(-6)+40=28#

#∥〈veca〉∥=sqrt(a_1^2+a_2^2+a_3^2)#

#∥〈veca〉∥=sqrt(4+1+64)=sqrt69#

#∥〈vecc〉∥=sqrt(9+36+25)=sqrt70#
let #cos(veca,vecc)=costheta#
so the angle
#costheta=28/((sqrt69)(sqrt70))=0.403#
#theta =66.2º#