If #A = <2 ,3 ,6 >#, #B = <5 ,1 ,7 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 20, 2016

The angle is #=103.2#º

Explanation:

Let's start by calculating #vecC#

#vecC=vecA-vecB=〈2,3,6〉-〈5,1,7〉=〈-3,2,-1〉#

The angle betwwen two vectors is given by the dot product.

#vecA.vecC=∥vecA∥*∥vecC∥*costheta#

Where #theta# is the angle between the 2 vectors.

The dot product is

#vecA.vecC=〈2,3,6〉.〈-3,2,-1〉=-6+6-6=-6#

The modulus of #vecA# is
#∥vecA∥=∥〈2,3,6〉∥=sqrt(4+9+36)=sqrt49=7#

The modulus of #vecC# is
#∥vecC∥=∥〈-3,2,-1〉∥=sqrt(9+4+1)=sqrt14#

Therefore,
#costheta=-6/(7sqrt14)=-0.23#

#theta=103.2#º