If #A= <2 ,-3 ,9 ># and #B= <-1, 3, 7 >#, what is #A*B -||A|| ||B||#?

1 Answer
Aug 18, 2017

# bb(ul(A)) * bb(ul(B)) - || bb(ul(A)) || \ || bb(ul(B)) || = 52 - sqrt(5546) #
# " " = -22.4714710... #

Explanation:

We have:

# bb(ul(A)) = <<2 ,-3 ,9 >> #
# bb(ul(B)) = << -1, 3, 7 >> #

So then we can calculate the scalar product:

# bb(ul(A)) * bb(ul(B)) = <<2 ,-3 ,9 >> * << -1, 3, 7 >> #
# " " = (2)(-1) + (-3)(3) + (9)(7) #
# " " = -2-9+63 #
# " " = 52 #

And next the metric norms:

# || bb(ul(A)) || = sqrt( (2)^2+(-3)^2+(9)^2 ) #
# " " = sqrt( 4+9+81 ) #
# " " = sqrt( 94 ) #

# || bb(ul(B)) || = sqrt( (-1)^2+(3)^2+(7)^2 ) #
# " " = sqrt( 1+9+49 ) #
# " " = sqrt( 59 ) #

So the the result we require is:

# bb(ul(A)) * bb(ul(B)) - || bb(ul(A)) || \ || bb(ul(B)) || = 52 - sqrt(94)sqrt(59) #
# " " = 52 - sqrt(5546) #
# " " = -22.4714710... #