If #A = <2 ,4 ,-1 >#, #B = <-1 ,8 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 3, 2017

The angle is #=118.5#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈2,4,-1〉-〈-1,8,-5〉=〈3,-4,4〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,4,-1〉.〈3,-4,4〉=6-16-4=-14#

The modulus of #vecA#= #∥〈2,4,-1〉∥=sqrt(4+16+1)=sqrt21#

The modulus of #vecC#= #∥〈3,-4,4〉∥=sqrt(9+16+16)=sqrt41#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-14/(sqrt21*sqrt41)=-0.48#

#theta=118.5#º