If #A = <2 ,4 ,-3 >#, #B = <3 ,1 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 21, 2016

The angle is #=78.5º#

Explanation:

Let's calculate #vecC#

#vecC=vecA-vecB=〈2,4,-3〉-〈3,1,-5〉=〈-1,3.2〉#

The angle between #vecA# and #vecC# is obtained from the dot product definition

#vecA.vecC=∥vecA ∥* ∥vecC∥* costheta#

The dot product is #=〈-1,3.2〉.〈2,4,-3〉=(-2+12-6)=4#

The modulus of #vecA# is #=∥vecA∥=∥〈2,4,-3〉∥=sqrt(4+16+9)=sqrt29#

The modulus of #vecC# is #=∥vecc∥=∥〈-1,3,2〉∥=sqrt(1+9+4)=sqrt14#

Therefore,

#costheta=(vecA.vecC)/(∥vecA ∥* ∥vecC∥)=4/(sqrt29sqrt14)=0.1985#

#theta=78.5º#