If #A = <2 ,4 ,-3 >#, #B = <3 ,4 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 25, 2017

The angle is #=131.6#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈2,4,-3〉-〈3,4,-5〉=〈-1,0,2〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,4,-3〉.〈-1,0,2〉=-2+0-6=-8#

The modulus of #vecA#= #∥〈2,4,-3〉∥=sqrt(4+16+9)=sqrt29#

The modulus of #vecC#= #∥〈-1,0,2〉∥=sqrt(1+0+4)=sqrt5#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-8/(sqrt29*sqrt5)=-0.664#

#theta=131.6#º