If #A = <2 ,-5 ,9 >#, #B = <-9 ,1 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 13, 2017

The angle is #=25.4^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈2,-5,9〉-〈-9,1,-5> = <11,-6,14>#
The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,-5,9〉.〈11,-6,14〉=22+30+126=178#

The modulus of #vecA#= #∥〈2,-5,9〉∥=sqrt(4+25+81)=sqrt110#

The modulus of #vecC#= #∥〈11,-6,14〉 ∥=sqrt(121+36+196)#

#=sqrt353#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=178/(sqrt110*sqrt353)=0.903#

#theta=25.4^@#