If #A = <2 ,-8 ,5 >#, #B = <4 ,-7 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 7, 2016

The angle is #=56.9#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈2,-8,5〉-〈4,-7,-5〉=〈-2,-1,10〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,-8,5〉.〈-2,-1,10〉=-4+8+50=54#

The modulus of #vecA#= #∥〈2,-8,5〉∥=sqrt(4+64+25)=sqrt93#

The modulus of #vecC#= #∥〈-2,-1,10〉∥=sqrt(4+1+100)=sqrt105#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=54/(sqrt93*sqrt105)=0.55#

#theta=56.9#º