If #a^2/(b+c)=b^2/(c+a)=c^2/(a+b)# then show that #1/(1+a)+1/(1+b)+1/(1+c)=1# ?

if #a^2/(b+c)=b^2/(c+a)=c^2/(a+b)# then show that #1/(1+a)+1/(1+b)+1/(1+c)=1#

1 Answer
Dec 11, 2017

See below.

Explanation:

From

#a^2/(b+c)=b^2/(c+a)=c^2/(a+b)#

we conclude

#(b^2-a^2)/(a-b) = (c^2-a^2)/(a-c) =(c^2-b^2)/(b-c)#

hence #a=b=c = zeta#

then

#3/(1+zeta) = 1 rArr zeta = 2#

Concluding. The assertion is true only if #a=b=c=2#

NOTE

#u/v = p/q=lambda rArr (upmp)/(vpmq)=lambda#

because

#(upmp)/(vpmq) = (lambda vpmlambda q)/(vpmq) = lambda#

then

#{a^2/(b+c)=b^2/(c+a)=c^2/(a+b)} rArr {(b^2-a^2)/(a-b) = (c^2-a^2)/(a-c) =(c^2-b^2)/(b-c)}#

but

# {(b^2-a^2)/(a-b) = (c^2-a^2)/(a-c) =(c^2-b^2)/(b-c)} rArr {b+a=c+a=c+b} rArr {a=b=c}#