If #A = <3 ,1 ,-1 >#, #B = <4 ,6 ,-1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 4, 2016

The angle is #=118.2#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈3,1,-1〉-〈4,6,-1〉=〈-1,-5,0〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈3,1,-1〉.〈-1,-5,0〉=-3-5-0=-8#

The modulus of #vecA#= #∥〈3,1,-1〉∥=sqrt(9+1+1)=sqrt11#

The modulus of #vecC#= #∥〈-1,-5,0〉∥=sqrt(1+25+0)=sqrt26#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-8/(sqrt11*sqrt26)=-0.47#

#theta=118.2#º