If #A = <3 ,1 ,-1 >#, #B = <4 ,-7 ,-1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 18, 2016

The answer is #79.2º#

Explanation:

Lets start by calculating

#vecC=vecA-vecB=〈3,1,-1〉-〈4,-7,-1〉=〈-1,8,0〉#

The angle #theta# between #vecA# an #vecC# is given by the dot product definition

#vecA.vecC=∥vecA∥*vecC∥*cos theta#

The dot product #=〈3,1,-1〉.〈-1,8,0〉=(3*-1+1*8+0)=5#

The modulus of #vecA# is #=∥vecA∥=∥〈3,1,-1〉∥=sqrt(9+1+1)=sqrt11#

The modulus of #vecC# is #=∥vecC∥=∥〈-1,8,0〉∥=sqrt(1+64+0)=sqrt65#

The angle is #costheta=(vecA.vecC)/(∥vecA∥*vecC∥)#

#costheta=5/(sqrt11*sqrt65)=0.187#

#theta=79.2º#