If #A = <3 ,-1 ,3 >#, #B = <2 ,-2 ,5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 17, 2017

#A=<3,-1,3>,B=<2,-2,5> and C=A-B => theta_(A,C) approx 121.091^@#

Explanation:

Algebraically we can get #C=A-B# by subtracting the components of #B# from the components of #A#

#vecC=vecA-vecB=<3-2,-1-(-2),3-5>#

# = <1,-1+2,-2> = <1,1,-2>#

Also, we can find the dot product of the vector A anc C

#vecA*vecC=3(1)+(-1)(1)+3(-2)=3+-1+-6=-4#

Another definition of the dot product is

#vecA*vecC=|vecA||vecC|cos(theta_(A,C))#

So, we need to find #|A|# and #|C|#

#|vecA|=sqrt(3^2+(-1)^2+3^2)=sqrt(9+1+9)=sqrt(10)#

#|vecC|=sqrt(1^2+1^2+(-2)^2)=sqrt(1+1+4)=sqrt(6)#

#=> vecA*vecC=|vecA||vecC|cos(theta_(A,C))=(sqrt(10))(sqrt(6))cos(theta_(A,C))#

Then we plug in

#<=> (vecA*vecC)/((sqrt(10))(sqrt(6))##= (-4)/(sqrt(60)##= (-4)/(2sqrt(15))##=(-2)/(sqrt(15)##=cos(theta_(A,C))#

#<=> cos^(-1)(-2/(sqrt(15)))=underline(theta_(A,C)approx 121.091^@)#

And we have the angle