If A = <3 ,-1 ,5 >, B = <5 ,2 ,8 > and C=A-B, what is the angle between A and C?

1 Answer
Jan 24, 2017

The angle is =130.4º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈3,-1,5〉-〈5,2,8〉=〈-2,-3,-3〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈3,-1,5〉.〈-2,-3,-3〉=-6+3-15=-18

The modulus of vecA= ∥〈3,-1,5〉∥=sqrt(9+1+25)=sqrt35

The modulus of vecC= ∥〈-2,-3,-3〉∥=sqrt(4+9+9)=sqrt22

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-18/(sqrt35*sqrt22)=-0.65

theta=130.4º