If #A = <3 ,-1 ,8 >#, #B = <4 ,-3 ,-6 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jun 2, 2017

The angle is #=28.7º#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈3,-1,8〉-〈4,-3,-6〉=〈-1,2,14〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈3,-1,8〉.〈-1,2,14〉=-3-2+112=107#

The modulus of #vecA#= #∥〈3,-1,8〉∥=sqrt(9+1+64)=sqrt74#

The modulus of #vecC#= #∥〈-1,2,14〉∥=sqrt(1+4+196)=sqrt201#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=107/(sqrt74*sqrt201)=0.88#

#theta=28.7#º