If #A = <3 ,-1 ,-8 >#, #B = <5 ,6 ,-9 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 24, 2017

The angle is #=96.3^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈3,-1,-8〉-〈5,6,-9〉=〈-2,-7,1〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈3,-1,-8〉.〈-2-7,1〉=-6+7-8=-7#

The modulus of #vecA#= #∥〈3,-1,-8〉∥=sqrt(9+1+64)=sqrt74#

The modulus of #vecC#= #∥〈-2,-7,1〉∥=sqrt(4+49+1)=sqrt54#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-7/(sqrt74*sqrt54)=-0.11#

#theta=arccos (-0.11)=96.3^@#