If #A = <3 ,2 ,5 >#, #B = <5 ,2 ,8 ># and #C=A-B#, what is the angle between A and C?

1 Answer
May 10, 2017

The angle is #=160.9#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈3,2,5〉-〈5,2,8〉=〈-2,0,-3〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈3,2,5〉.〈-2,0,-3〉=-6+0-15=-21#

The modulus of #vecA#= #∥〈3,2,5〉∥=sqrt(9+4+25)=sqrt38#

The modulus of #vecC#= #∥〈-2,0,-3〉∥=sqrt(4+0+9)=sqrt13#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-21/(sqrt38*sqrt13)=-0.945#

#theta=160.9#º