If #A = <3 ,8 ,8 >#, #B = <4 ,-3 ,-1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 28, 2016

The angle is #=19.7#º

Explanation:

To calculate the angle between 2 vectors, we use the dot product.

#vecA.vecC=∥vecA∥*vecC∥*cos(vecA,vecC)#

#vecC=vecA-vecB=〈3,8,8〉-〈4,-3,-1〉=〈-1,11,9〉#

The dot product is

#vecA.vecC=〈3,8,8〉.〈-1,11,9〉=-3+88+72=157#

The modulus of #vecA# is

#∥vecA∥=∥〈3,8,8〉∥=sqrt(9+64+64)=sqrt137#

The modulus of #vecC# is

#∥vecC∥=∥〈-1,11,9〉∥=sqrt(1+121+81)=sqrt203#

Therefore,
#cos(vecA,vecC)=(vecA.vecC)/(∥vecA∥*∥vecC∥)#

#=157/(sqrt137sqrt203)=0.94#

#(vecA,vecC)=19.7#º