If #A = <36 ,1 ,5 >#, #B = <4 ,6 ,-1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 4, 2017

The angle is #=0#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈36,1,5〉-〈4,6,-1〉=〈32,-5,6〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈36,1,5〉.〈32,-5,6〉=1152-5+30=1177#

The modulus of #vecA#= #∥〈36,1,5〉∥=sqrt(1226+1+25)=sqrt1252#

The modulus of #vecC#= #∥〈32,-5,6〉∥=sqrt(1024+25+36)=sqrt1085#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=1177/(sqrt1252*sqrt1085)=1#

#theta=0#º