If #A = <4 ,1 ,5 >#, #B = <6 ,7 ,-2 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 28, 2017

The angle is #=69.9^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,1,5〉-〈6,7,-2〉=〈-2,-6,7〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,1,5〉.〈-2,-6,7〉=-8-6+35=21#

The modulus of #vecA#= #∥〈4,1,5〉∥=sqrt(16+1+25)=sqrt42#

The modulus of #vecC#= #∥〈-2,-6,7〉∥=sqrt(4+36+49)=sqrt89#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=21/(sqrt42*sqrt89)=0.34#

#theta=69.9^@#