If #A = <4 ,2 ,1 >#, #B = <-8 ,4 ,9 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 28, 2016

The answer is #=57.3#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,2,1〉-〈-8,4,9〉=〈12,-2,-8〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,2,1〉.〈12,-2,-8〉=48-4-8=36#

The modulus of #vecA#= #∥〈4,2,1〉∥=sqrt(16+4+1)=sqrt21#

The modulus of #vecC#= #∥〈12,-2,-8〉∥=sqrt(144+4+64)=sqrt212#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=36/(sqrt21*sqrt212)=0.54#

#theta=57.3#º