If #A = <4 ,2 ,5 >#, #B = <6 ,2 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 25, 2017

The angle is #=52.1#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,2,5〉-〈6,2,-5〉=〈-2,0,10〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,2,5〉.〈-2,0,10〉=-8+0+50=42#

The modulus of #vecA#= #∥〈4,2,5〉∥=sqrt(16+4+25)=sqrt45#

The modulus of #vecC#= #∥〈-2,0,10〉∥=sqrt(4+0+100)=sqrt104#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=42/(sqrt45*sqrt104)=0.61#

#theta=52.1#º