If A = <4 ,2 ,5 >, B = <-8 ,2 ,8 > and C=A-B, what is the angle between A and C?

1 Answer
Apr 6, 2017

The angle is =66.6º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈4,2,5〉-〈-8,2,8〉=〈12,0,-3〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈4,2,5〉.〈12,0,-3〉=48+0-15=33

The modulus of vecA= ∥〈4,2,5〉∥=sqrt(16+4+25)=sqrt45

The modulus of vecC= ∥〈12,0,-3〉∥=sqrt(144+0+9)=sqrt153

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=33/(sqrt45*sqrt153)=0.4

theta=66.6º